MnF₄: PREPARATION AND PROPERTIES

- M. Adelhelm and E. Jacob*
- * MAN Technologie AG Bauschingerstr. 20, W-8000 München 50 (F.R.G.)

Pädagogische Hochschule, Abt. Chemie Reuteallee 46, W-7140 Ludwigsburg (F.R.G.)

In the course of systematic investigations of the behavior of transition metals in the fluorine combustion analysis [1] favorable conditions for the synthesis of MnF₄ were found. MnF₄ proved to be more stable than previously [2] assumed. Thermolysis data showed that liberation of fluorine occurs only at temperatures above 320°C; rapidly above 360°C:

MnF₄
$$> 320^{\circ}C$$
 MnF₃ + 1/2 F₂

Furthermore, for the synthesis a temperature of 280°C, with a fivefold fluorine excess is sufficient.

 ${\tt MnF_4}$ reacts with conc. hydrofluoric acid to a yellow solution of ${\tt MnF_6}^{2-}$.

 ${\rm MnF_4}$ at room temperature is not as reactive as previously assumed, and the reasons for these discrepancies will be discussed. To characterize ${\rm MnF_4}$, infrared and Raman spectra were recorded for the first time and compared with related compounds. ${\rm MnF_4}$ as a source of fluorine will be discussed.

¹ E. Jacob, <u>Fresenius Z. Anal. Chem., 333</u> 760 (1989); E. Jacob and M. Harris in: D. Hirschfeld, Edt.: <u>Nichtmetalle in Metallen '90</u> DGM Inf.ges. 79 (1990)

² Gmelin, Handb. Anorg. Chem., Mangan C4 92 (1980); V.V. Ostropikov and E. G. Rakov, <u>Izv. Vyssh. Uchebn. Zayed.</u>, <u>Khim. Khim. Technol. 32</u> 3 (1989)